The Bailey Lemma and Kostka Polynomials
نویسنده
چکیده
Using the theory of Kostka polynomials, we prove an An−1 version of Bailey’s lemma at integral level. Exploiting a new, conjectural expansion for Kostka numbers, this is then generalized to fractional levels, leading to a new expression for admissible characters of A n−1 and to identities for A-type branching functions.
منابع مشابه
Inhomogeneous lattice paths, generalized Kostka polynomials and An−1 supernomials
Inhomogeneous lattice paths are introduced as ordered sequences of rectangular Young tableaux thereby generalizing recent work on the Kostka polynomials by Nakayashiki and Yamada and by Lascoux, Leclerc and Thibon. Motivated by these works and by Kashiwara’s theory of crystal bases we define a statistic on paths yielding two novel classes of polynomials. One of these provides a generalization o...
متن کاملFermionic Formulas For Unrestricted Kostka Polynomials And Superconformal Characters
The problem of finding fermionic formulas for the many generalizations of Kostka polynomials and for the characters of conformal field theories has been a very exciting research topic for the last few decades. In this dissertation we present new fermionic formulas for the unrestricted Kostka polynomials extending the work of Kirillov and Reshetikhin. We also present new fermionic formulas for t...
متن کاملUnimodality of generalized Gaussian coefficients
A combinatorial proof of the unimodality of the generalized q-Gaussian coefficients [ N λ ] q based on the explicit formula for Kostka-Foulkes polynomials is given. 1. Let us mention that the proof of the unimodality of the generalized Gaussian coefficients based on theoretic-representation considerations was given by E.B. Dynkin [1] (see also [2], [10], [11]). Recently K.O’Hara [6] gave a cons...
متن کاملUbiquity of Kostka Polynomials
We report about results revolving around Kostka–Foulkes and parabolic Kostka polynomials and their connections with Representation Theory and Combinatorics. It appears that the set of all parabolic Kostka polynomials forms a semigroup, which we call Liskova semigroup. We show that polynomials frequently appearing in Representation Theory and Combinatorics belong to the Liskova semigroup. Among ...
متن کاملA Generalization of the Kostka-foulkes Polynomials
Combinatorial objects called rigged configurations give rise to q-analogues of certain Littlewood-Richardson coefficients. The Kostka-Foulkes polynomials and twocolumn Macdonald-Kostka polynomials occur as special cases. Conjecturally these polynomials coincide with the Poincaré polynomials of isotypic components of certain graded GL(n)-modules supported in a nilpotent conjugacy class closure i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004